Tuesday, November 25, 2014

Trigonometric Identities Intro

What is up y'all. Today first thing in the morning we learned about trigonometric Identities.

First off the definition of trigonometric function is an equation that involves at least one trigonometric function of a variable. This equation is referred to trigonometric identity when all permissible values of the variable for which both sides of the equation are shown.

To verify an identity: you show that the left hand side (LHS) is identical to the right hand side (RHS)

Reciprocal Identities:

cscΘ = 1÷sinΘ          secΘ= 1÷cosΘ          cotΘ=1÷tanΘ

Quotient Identities:

tanΘ=sinΘ÷cosΘ          cotΘ=cosΘ÷sinΘ

Pythagorean Identity:

cos² Θ + sin² Θ =1


Example 1. We can verify a potential Identity by..

a) Determining the non-permissible values, in degrees, for the equation secΘ = tanΘ÷sinΘ

We can start on the LHS, follow the steps!
             
               secΘ = tanΘ÷sinΘ

1.

secΘ = 1÷cosΘ         • cos 0
                                             Θ≠ 0°, 90°, 270°
                                             Θ≠ 180°n. where n E I

2.

tanΘ÷sinΘ                • sin 0
                                           Θ≠ 0°, 180°, 360°
                                           Θ≠ 180°n, where n E I

3. 

tanΘ = sinΘ÷cosΘ    • cos 0
                                             Θ≠ 0°, 90°, 270°
                                             Θ≠ 180°n. where n E I

4.

90°n, where n E I

b) Numerically verify that Θ =60° and Θ = π÷4 are solutions of the equation.

1. Θ = 60°

secΘ = tanΘ÷sinΘ

sec60° = tan60°÷sin60°

2. Input perfect right triangles.


2 = √3÷√3÷2

2 = √3 • 2÷√3

2 = 2 

this shows that Θ = 60° is a solution to the equation.

Example 2: Use identities to simplify expressions.

a) Determine he non-permissible values, in radians, of the variable in the expression 
sec x÷tan x.











b) Simplify the expression.

 

Example 3. Pythagorean Identity.

a) Verify that the equation 1 + tan² Θ = sec² Θ is true when Θ = 3π÷4











b) Express the Pythagorean identity cos² Θ + sin² Θ = 1 as the equivalent identity 1 + tan² Θ = sec² Θ.














That is all happy precal-ing!











                   

No comments:

Post a Comment